

Challenging Laboratory Measurements – Contribution of Numerical Petrophysics

Vanessa HEBERT

SPWLA France - Technical session Paris, SGF, 2019 octobre 8th SPWLA FRANCE CH PTER

Still challenging

Imaging vs Sample size

4 scales of investigations: multiscale reservoir structures \rightarrow

- Representative micro- to macroscale properties
- \rightarrow Fluid flow pathways

Approch & Software solution

Database screening by 3D imaging: cores, plugs, cuttings, \rightarrow Voxilon, workflow-oriented software unstructured zones

Voxilon Analysis

Voxilon analyses list

Morphological characteristics

- Effective, Accessible porosities
- Chord-length distribution
- Sphere diameter distribution
- Geometrical tortuosity
- Formation factor

Dynamical properties

- Effective diffusion
- Diffusive tortuosity
- Absolute permeability (Kx, Ky, Kz)
- Capillary pressure

DRP measurements	Results	Computation time
Effective porosity	24.5%	3 sec
Max pore diameter (chord-length)	144 μm	1 sec
Main pore diameter (maximum-balls)	43 μm	1 sec
Geometrical tortuosity	1.5	181 sec
Connected pore components	519 components	2 sec
Diffusivity-tortuosity	5.2	90 sec
Absolute permeability	3130 mD	31 sec
Pore entry radius from Pc curve	23 µm	37 sec
		Total time: 6 min

Computations made on a Fontainebleau sandstone image - 480^3 voxels (110 Mo) Hardware setup: Dell XP 13 laptop 4 cores/8 GB RAM

Focus on Absolute permeability

Characteristics

vexaya

- □ Permeability estimation from skeleton
- Paralleled calculation
- □ Similar method to Pore Network Modeling

Rocks	lmage size	Permeabilit y	Computation time	
Mallorca	1 Gb	14 mD	276 sec	
Berea	2,5 Gb	104 mD	11 min	
GD15	6 Gb	100 mD	39 min	
Bentheimer	21 Gb	2270 mD	1h 45 min	
Hardware setup: HP Z840 workstation 32 cores / 256 GB RAM				

Focus on Effective diffusion

Characteristics

- Diffusion simulation based on Time Domain Random Walk method (Dentz, Russian, Dweik, Gouze et al.)
- Paralleled algorithm
- □ Semi-automated post-processing

Rocks	lmage size	Diffusive tortuosity	Computation time	
Mallorca	1 Gb	9	10 sec	
Berea	2,5 Gb	7	10 sec	
GD15	6 Gb	30	500 sec	
Bentheimer	21 Gb	5	295 sec	
Hardware setup: HP Z840 workstation 32 cores / 256 GB RAM				

Diffusion process in a sandstone pore network

Focus on Capillary pressure

Characteristics

- Drainage process modelisation
- □ Based on the skeleton: hydraulic radius per node
- Non-wetting phase
- □ Trapping possibility

Rocks	lmage size	Pore entry diameter	Computation time	
Mallorca	1 Gb	7 μm	296 sec	
Berea	2,5 Gb	4 µm	13 min	
GD15	6 Gb	5 μm	42 min	
Bentheimer	21 Gb	3 µm	1h 48 min	
Hardware setup: HP Z840 workstation 32 cores / 256 GB RAM				

Porosity & Permeability estimation

From digital core

Digital core Visualisation

> CT scanner imaging ➤ Voxel size: 0.5 mm > 3 ft long Core into PVC tube Inner structure Core extraction Main structural features through PVC tube

Digital core Screening

https://youtu.be/a3dBb0Dll0k

Voxilon | Digital Core Analysis

Porosity screening from REVs

Digital core screening by Representative Elementary Volume displacement

→ Porosity profiles

- Total porosity
- □ X-direction (horizontal plane) effective porosity
- □ Y-direction (horizontal plane) effective porosity
- □ Z-direction (vertical plane) effective porosity

voxaya

Permeability screening from REVs

Digital core Screening

1200 virtual plugs sampled along 100m long "Full core" 3D scan

 \rightarrow High resolution porosity profile

voxaya

Phi-K relationship - microplug analysis

Multiscale pore network quantification: porosity vs connectivity

Voxilon | Digital Core Analysis

Challenging characterization

through sediments & cuttings

Unconsolidated sediments Analysis

Column fulfilled with rock grains and fluids

 \rightarrow Numerical quantification is possible through tube

voxaya

Characteristics	Column A	Column B
Number of grains	444	608
Intergranular porosity	52%	46%
Mean grain volume	0.8 mm3	0.6 mm3
Reactivity surface	2324 mm2	2284 mm2
Mean grain sphericity	2.2	1.4

Digital cutting Visualisation

Video link:

https://youtu.be/wVXZnMhscUM

Vewlon - Version 1.1.12 - (c) VOXAVA		- 0 X
File Edit Window Help		
🖛 Database Info	Sample Information:	
Server localhost		
Port 27017		
Database demo		
Collection cuttings		
Path \Users\Vanessa\Documents\Data\		
Name • Object Type I IIB Guttino-1 SAMPLE		
	Name: Cuttro-1	
	Construction Continue Contraction Continue Contraction Contractio	
Load Delete		
✓ Object Inspector		
Sample: Cutting-t		
Location: Hole A1 - 520 mbsl		
Date: 2014-10-02	Lacation: Hole A1 - 520 mbs	
	Date: 2014-10-02	

Voxilon | Digital Sediment Analysis

Digital cutting Analysis

Digital cutting

\rightarrow Numerical quantification into each cutting

> 4	mm	long
-----	----	------

Cutting 1 () wal 305m, coa obi-	hand-196 / GlobalMatrice	107			×	
Global Metrics						
Overview						
V+ [mm²]	V [mm²]	S [mm²]	S/V [mm ¹]			
	0.1576	131.2585	832.8379	37332		
Porosity						
	Direction	Ø [%]	V [mm ³]	Number of Components		
Total		7.451	0.1576	127032		
Effective					Cutting-1 / vxa1_3p5m-seg-obj-bgnd-1	196 / Permeabilit — 🔲
					Absolute Permeability	
		4.430	0.0937		Permethilty	
Accessible					Permeasury	
					Direction	Permeability [mD]
					+2	12.15
		4.430	0.0937	16		Export Close
		4.430	0.0937			
Isolated		3.020	0.0639	127000		
V ₇ : Total Object Volume	Cutting	g-1 / vxa1_3p5m-seg-c	bj-bgnd-196 / Geo	metricalTortuosity-199	1	- 0
V: Pore Space Volume S: Pore-Matrix interface Surfac x: Euler Characteristic	ce Area Geome	trical Tortuosit	ý			
Φ: Porosity	Geom	netrical Tortuosity				
	6	Direction	Geon	netrical Tortuosity	Shortest Path Length [mm]	Sample Length [mm]
iμm				1.604	5 2.8528	1.77
•						
						Export

Digital saturated plug Analysis

Video link:

https://youtu.be/5Bg7qqKR4T8

D ⊂ ○ Valutan - Version 1.1.10 - (c) VOXAYA			😯 🌆 🚛 12:54 PM 🤩
+ Database Info	Sample Information:		
Name • Object Type 10 266 Fontainebleau COID SAMTLE 10 268 Fontainebleau CAID SAMTLE 10 268 Fontainebleau CAID SAMTLE 10 273 Fontainebleau CAID SAMTLE 10 273 Fontainebleau CAID SAMTLE 10 268 Fontainebleau CAID SAMTLE 10 Chalkb-sample SAMTL			
Load Delete + Object Inspector Sample: Fontainebeau GDF FB2 Location: Paris Date: 01-2019		Name: Fontainebleau GDF FB2 Description: Travaco de Režki Echantillons de gres Minploga de diametre 5.8 mm et drue bongueur d'envino 6 nm et Imagéa J réat sec et enrobél résine étanche d'um épaisseur de 0.5 mm) Angés un scan (RX à l'état sec echantillon saturé a 100 % de la	
2.8		Date: 01-2019 Edit Council	

Porosity Estimation by Machine Learning

SCA2019-025 paper

Segmentation step Flaws

Sensitive & crucial step of the image analysis workflow \rightarrow

Isolate & labelize each component.

Several segmentation tools: binary, hysteresis, gaussian mixture thresholding.

Resulted image depending on the operator.

Direct impact on quantifications

Enhance by filter combination.

Pre-processing : artefact, beam-hardening reducing,

signal/noise ratio increase.

Distorted initial information.

Machine Learning Workflow

Experiments with CNN

Hardware setup: HP Z840 workstation, Intel Xeon CPU 3.20 GHz (32 cores), Nvidia Quadro M6000, 256 GB RAM

Global recognition accuracy> 99.9%

voxaya

Testing Direct porosity estimation

Architecture

based on Sudakov 2016

Segmentation by IA

User segmentation

Hysteresis Thresholding with Voxilon

AutoEnc segmentation

voxaya

Testing Explicit porosity estimation

Porosity distribution from AutoEnc on Berea

Relative error distribution between AutoEnc and Reference

Thanks for your attention

hebert@voxaya.com

0

www.voxaya.com

Cap Omega – CS 39521 Rond-point Benjamin Franklin 34000 MONTPELLIER FRANCE