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Machine Learning for Better Wells

 Facies Classification using Machine Learning

 Sub-clustering in Facies Determination

 Automated Log Editing using Deep Learning
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Well Data

Python Environment

100+ packages including 

numpy, scipy, matplotlib, keras, 

theano, plconnect, scikit-learn, 

pandas, plotly and others

Including IDE jupyter, spyder

• Views

• Processors

• Console

• Jupyter workflows

How does it work?
Multiple extensions contained 

within a workspace serving 

different needs

Each extension is a folder in a 

workspace

Flexible and portable

Can also be packaged as 

jupyter workflows

All scripts run as external 

processes and are not 

restricted by python GIL



What is inside the distribution? – Jupyter
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Workflows with 

code and rich text 

+ Visualization

Workflows 

home 

directory



5

Facies Classification 

Unsupervised Machine Learning 



Clustering Workflow
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Select the Wells to be Analyzed
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Determining Optimum Number of Clusters
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Pair-Plots
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Crossplot
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Write to Database and Display
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Build (or Edit) a Category Table
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Supervised Classification with Metrics

13 The K-Means unsupervised clusters provides the supervision 

Input Log data

Predicted Facies 

using ML
DT, DTS 

predicted by 

deep learning



Export Jupyter Results to .pdf or .html File
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Sub-Clustering Facies Determination 



Complex Carbonate Example
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Clustering Problem
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Sub-Cluster Workflow
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Sub-Clustering Process and Results
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Before

Sub-Clustering
After

Sub-Clustering



Sub-Clustering Results
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Crossplots of Clustering Types
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3D Crossplots of Clustering Results

22 Gaussian Mixture

Spectral Cluster
K-Means



Automated Log Editing

Chiran Ranganathan, Fred Jenson, Joe Johnston



Why Automate Log Editing?

The objective of automated log editing is 

to greatly reduce the amount of time 

spent in repetitive mundane operations 

preparing data for meaningful analysis.
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The Area of Interest
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The Automated Editing Workflow

 Prep the data 

 Review the data

 Anomaly detection and flag curve generation

 Pay flag creation

 Create nulled flag curve for use in synthetic generation

 Generate synthetic curve over non-nulled intervals

 Merge synthetic curve with measured curve controlled 

by anomaly flags



Log Data Example
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Examine the Density Curve Data
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Wells with bad(?) data



Similarity Analysis
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Jupyter used for Machine Learning Workflows
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Anomaly Detection, Boxplots with Whiskers
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Spatial Clustering Technique
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There are parameters set to control 

the number of outliers detected using 

spatial clustering.  The main 

parameters are

Eps  The maximum distance 

between two samples for them to be 

considered in the same neighborhood.

min_samples The minimum number 

of samples to be a neighborhood.

There are other parameters of interest 

that can be adjusted to optimize outlier 

detection including clustering 

algorithms.



Outlier Detections Methods
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Each of these outlier detection 

methods have parameters that can 

be tuned for optimum results.



Flag Curves
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Synthetic Curve Generation
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Synthetic Curve Prediction 
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Keras Generated RHOB Curve
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Pay Zone Protection

Productive intervals often show up as anomalies with outlier detection packages.  A 

pay flag can mediate this issue.38



Creating the Combined Curved
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Combined RHOB Curve
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Original versus Merged Data
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Summary

 Machine learning workflows can greatly reduce the time required to 

correct curve data when dealing with significant numbers of wells

 Eliminating repetitive mundane tasks is a good thing

 These workflows can be saved and used in other areas

 It is a lot more efficient to create valid log data with Jupyter Workflows 

than manually editing curves on large numbers of wells
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Thank You


